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Abstract—Current leadership-class machines suffer from a
significant imbalance between their computational power and
their I/O bandwidth. I/O forwarding is a paradigm that attempts
to bridge the increasing performance and scalability gap between
the compute and I/O components of leadership-class machines to
meet the requirements of data-intensive applications by shipping
I/O calls from compute nodes to dedicated I/O nodes. I/O
forwarding is a critical component of the I/O subsystem of the
IBM Blue Gene/P supercomputer currently deployed at several
leadership computing facilities. In this paper, we evaluate the
performance of the existing I/O forwarding mechanisms for
BG/P and identify the performance bottlenecks in the current
design. We augment the I/O forwarding with two approaches:
I/O scheduling using a work-queue model and asynchronous data
staging. We evaluate the efficacy of our approaches using mi-
crobenchmarks and application-level benchmarks on leadership-
class systems.

I. INTRODUCTION

Leadership-class systems are providing unprecedented op-
portunities to advance science in numerous fields, such as cli-
mate sciences, biosciences, astrophysics, computational chem-
istry, materials sciences, high-energy physics, and nuclear
physics [16]. Current leadership-class machines such as the
IBM Blue Gene/P (BG/P) supercomputer at the Argonne
National Laboratory and the Cray XT system at the Oak
Ridge National Laboratory consist of a few hundred thousand
processing elements. BG/P is the second generation of su-
percomputers in the Blue Gene series and has demonstrated
ultrascale performance together with a novel energy-efficient
design. As of November 2009, five of the top 20 systems in
the Top 500 list [19] and thirteen of the top 20 most power-
efficient systems were based on the Blue Gene solution [7].

While the computational power of supercomputers keeps
increasing with every generation, the I/O systems have not
kept pace, resulting in a significant performance bottleneck. In
order to achieve higher performance, many HPC systems run a
stripped-down operating system kernel on the compute nodes
to reduce the operating system “noise.” The IBM Blue Gene
series of supercomputers takes this a step further, restricting
I/O operations from the compute nodes. In order to enable
applications to perform I/O, the compute node kernel ships all
I/O operations to a dedicated I/O node, which performs I/O
on behalf of the compute nodes. This process is known as I/O
forwarding [3].

Lang et al. [11] performed an initial study of the I/O for-
warding mechanism on BG/P and found the overall efficiency
to be 60%. This affects the performance of reading from and
writing to storage systems and is a key in making compute-
intensive applications I/O bound. Additionally, there is an
increasing need to perform data analysis and visualization
while a simulation is running [10]. In order to do so, data
must travel down a similar path when streamed off the system,
such as when performing visual analysis concurrently with the
simulation. This process is also affected by the performance
of I/O forwarding. By improving the performance of the I/O
forwarding, researchers would be able to accelerate the time
to solution or apply more complex models during the same
time frame.

We present here a detailed analysis of the I/O forwarding
mechanism on IBM BG/P systems. Novel contributions of our
paper include the following:

• Identifying the performance bottlenecks in the I/O for-
warding mechanism on BG/P due to the resource con-
tention in the I/O forwarding mechanism.

• Designing an I/O scheduling mechanism for I/O forward-
ing on BG/P to mitigate resource contention.

• Augmenting the BG/P I/O forwarding mechanism with
asynchronous data staging to overlap I/O operations with
computation.

• Demonstratiing our approaches using synthetic and ap-
plication benchmarks to yield up to a 50% improvement
over the current I/O forwarding mechanism.

The remainder of the paper is organized as follows. We
present a brief overview of the IBM BG/P I/O infrastructure
in Section II and perform a detailed performance evaluation
in Section III. We discuss our approach to improve the
I/O performance in Section IV. Detailed experimental results
and the corresponding analysis are presented in Section V.
Literature related to our work is presented in Section VI. We
draw conclusions in Section VII.

II. BACKGROUND

We present an overview of the Argonne Leadership Com-
puting Facility (ALCF) resources, specifically the IBM Blue
Gene/P architecture, and describe the I/O subsystem of the



BG/P. The ALCF resources described are used for the system
evaluation.

A. The Argonne Leadership Computing Facility (ALCF)

ALCF is a U.S. Department of Energy facility that pro-
vides leadership-class computing infrastructure to the scientific
community. Figure 1 depicts the architecture of the primary
ALCF resources consisting of the compute resource (Intrepid),
the data analysis cluster (Eureka), and the file server nodes
interconnected by a large Myrinet switch complex, which are
the components of the ALCF that are of focus in this paper.

The BG/P system is the second in a series of supercomput-
ers designed by IBM to provide extreme-scale performance
together with high reliability and low power consumption.
Intrepid is a 160K core BG/P system with a peak performance
of 557 TF, 80 TB local memory, and 640 I/O nodes each with 4
cores, connected to the switching interconnect with aggregate
6.4 Tbps. BG/P systems comprise individual racks that can be
connected together; each rack contains 1,024 four-core nodes,
for a total of 4,096 cores per rack. Blue Gene systems have a
hierarchical structure; 64 nodes are grouped into a pset, and 8
psets together form a midplane that contains 512 nodes. Each
rack contains two such midplanes. Large Blue Gene systems
are constructed in multiple rows of racks.

Each node on the BG/P uses a quad-core, 32-bit, 850 MHz
IBM Power PC 450 with 2GB of memory. Each node is
connected to multiple networks. The I/O and interprocess
communication of BG/P travel on separate internal networks.
A three-dimensional torus network is used for point-to-point
communicating among compute nodes (CNs), while a tree
network allows CNs to perform I/O to designated I/O for-
warding nodes (this network can also be used for optimized
MPI collective operations). In the BG/P system, these I/O
forwarding nodes are referred to simply as I/O nodes (IONs).
For each pset a dedicated ION receives I/O requests from the
CNs in that group and forwards those requests over its 10
gigabit Ethernet port to the external I/O network.

The IONs are connected to an external 10 gigabit Ethernet
switch, which provides I/O connectivity to file servers nodes
(FSNs) of a clusterwide file system as well as connectivity to
the data analysis (DA) cluster nodes. Eureka, the data analysis
cluster, contains 100 servers with 800 Xeon cores, 3.2 TB
memory, and 200 nVidia Quadro FX 5600 GPUs. Eureka
is connected to the switch with 100 links at 10 Gbps each.
There are 128 file server nodes, each node of which is a dual-
core dual-processor AMD Opteron with 8 GB RAM per core.
Each FSN is connected to the Myrinet switch complex over
10 Gbps. The FSNs are connected via InfiniBand 4X DDR to
16 Data Direct Network 9900 storage devices.

B. I/O Forwarding in BG/P

The BG/P runs a lightweight Linux-like operating system on
the compute nodes called the Compute Node Kernel (CNK).
CNK is a minimalistic kernel that mitigates operating system
interference by disabling support for multiprocessing and
POSIX I/O system calls. To enable applications to perform

I/O, CNK forwards all I/O operations to a dedicated I/O node,
which executes I/O on behalf of the compute nodes. There are
two options for I/O forwarding on BG/P: CIOD from IBM and
ZOID from the ZeptoOS project [21].

1) Control and I/O Daemon (CIOD): CIOD [14]) is the
BG/P I/O-forwarding infrastructure provided by IBM. It con-
sists of a user-level daemon running on the ION. For each
CN process in the partition, a dedicated I/O proxy process
handles its associated I/O operations. CIOD receives I/O
requests forwarded from the compute nodes over the collective
network and copies them to a shared-memory region. The
CIOD daemon then communicates with I/O proxy process
using this shared memory. The I/O proxy executes the I/O
function on behalf of the CN and returns the result of the
function calls to the compute node.

2) ZeptoOS I/O Daemon (ZOID): ZeptoOS [21] is a re-
search project investigating open-source operating systems for
petascale architectures with 10,000 to 1 million CPUs. Its
current focus is the IBM Blue Gene/P, where it provides a
complete, flexible, high-performance software stack, including
a Linux-based compute node kernel, HPC communication
libraries, I/O forwarding, and performance analysis. ZOID
[9] is the I/O forwarding component of the ZeptoOS project
responsible for handling the I/O operations of the CNs.

Figure 2b depicts the multithreaded ZOID architecture.
ZOID creates a pool of threads large enough to handle
simultaneous I/O operations from all CNs on separate threads.
As shown in the figure, the write operation performed by the
application on the CN is forwarded to the ION. This is handled
by the ZOID thread responsible for the CN and first copied
into a buffer managed by ZOID. The ZOID thread executes
the write on behalf of the compute node. It sends back the
result of the function calls to the compute node and deletes the
buffer. A distinguishing feature of ZOID with respect to CIOD
is the multithreaded, rather than multiprocess, architecture. In
addition, ZOID can be easily extended with new functionality
via plug-ins [9].

III. PERFORMANCE EVALUATION OF THE BG/P I/O
SYSTEM

The BG/P I/O system consists of two stages: the collective
network between the CNs and the ION and the external I/O
network connecting the ION to the file server and analysis
nodes. In this section, we evaluate the performance of each
of these stages and then measure the combined end-to-end
performance of the two stages. Figure 3 depicts the stages
involved in the BG/P I/O system.

A. Collective Network Throughput

The achievable collective network throughput gives us a
measure of how fast data can be moved from the CNs in a
pset to their designated ION. The theoretical peak bandwidth
of the collective network is 850 MBps (≈ 810 MiBps).1

The peak throughput—taking into account 16 bytes of header

11 MiB = 1024 * 1024 bytes. In our evaluations MB refers to MiB.



Fig. 1. The Argonne Leadership Computing Facility maintains a 160K core BG/P compute cluster (Intrepid), data analysis cluster (Eureka), and the file server
nodes all interconnected by a 5-stage Myrinet switch complex, as well as other compute infrastructure including several test systems and a large computing
cloud resource

(a) CIOD (b) ZOID

Fig. 2. The two I/O forwarding mechanisms available on the BG/P at the ALCF



Fig. 3. Architecture of the BG/P I/O system

information for the I/O forwarding mechanism in both CIOD
and ZOID for every 256-byte payload, as well as 10 bytes
of hardware headers related to operation control and link
reliability—is ≈ 731 MiBps. To measure the collective net-
work performance, we wrote a parallel benchmark to read
and write data to /dev/null on the compute nodes. As the I/O
operations on the CN are forwarded and executed on the ION,
this benchmark effectively measures the achievable throughput
of the collective network. We tested this benchmark using
CIOD and ZOID for moving data from CN to the ION, varying
the buffer sizes as well as the number of CNs in a pset involved
concurrently in the transfer.

Fig. 4. Performance of collective network streaming from compute nodes to
I/O node

Figure 4 depicts the performance of CIOD to forward I/O
from CNs to the ION. As we increase the message size,
the ratio of the time spent on the actual data transfer to
the time spent on sending the control information increases,
thus leading to increased network utilization. Additionally, the
performance peaks between 4 to 8 nodes and reduces as we
increase beyond 32 nodes. The ION is a 850 MHz quad-
core processor. There is an increased contention for resources
on the ION as we increase the number of CNs, leading to
performance degradation.

ZOID demonstrates performance similar to that of CIOD.
We do notice a 2% performance improvement over CIOD with
respect to I/O forwarding, however. This is primarily due to

the multithreaded design of ZOID and the lower overhead
associated with thread context switches in ZOID compared
to the process context switches in CIOD. Thus, for a given
partition and a message size of 1 MiB, the collective network
is able to sustain up to 680 MiBps, or 93% efficiency.

B. External I/O Network Throughput
The second stage of the I/O pipeline is the external I/O

network connecting the IONs to the DAs (and FSNs). The
ION is connected by a 10 Gbps NIC to the analysis and file
system nodes. Thus, the theoretical peak bandwidth achiev-
able is ≈ 1190 MiBps. To measure the achievable network
throughput between the ION and DA, we used nuttcp version
7.1.2 [15], a commonly used performance benchmarking tool
in high=performance networking. Nuttcp supports multiple
protocols; we used TCP for the tests. Since the external
I/O network is shared, we report the maximum achievable
throughput for five 2-minute runs, where the message size was
1 MiB.

Fig. 5. Performance of data streaming from an I/O node to an analysis node

Figure 5 depicts the achievable throughput of moving data
(memory-to-memory) from the ION to a DA over the external
I/O network. In the figure, we notice that a single thread is
able to sustain only 307 MiBps. The reason is primarily the
lower compute capability of a single BG/P ION core, which
is unable to sustain any additional network traffic.

Increasing the number of sending threads to 2 leads to an
improvement in the sustained aggregate throughput as we use
more computational resources to drive the network. Using 4
threads on the ION, we are able to sustain a maximum of 791
MiBps. As we increase the number of threads to 8, however,
the performance decreases, mainly because of the increased
contention of resources on the ION. Using nuttcp, we were
able to sustain 1110 MiBps between two DA nodes with a
single thread. The reason is the higher compute capability of
the processors on the DA nodes. The DA nodes are dual-
processor quad-core 2 GHz Intel Xeon processors, compared
to the 850 MHz PowerPC quad-core processor of the ION.

C. End-to-End Performance of the BG/P I/O System
Given the effective collective network throughput and the

external I/O network throughput, one would hope that the



achievable end-to-end performance of the BG/P I/O system
would be close to the minimum of the maximum sustained
throughput of the collective network and the external I/O
network (i.e., ≈ 650 MiBps). To measure the I/O forwarding
performance, we wrote a parallel memory-to-memory data
transfer benchmark which uses sockets to communicate be-
tween CNs and the analysis node using both the collective
and external I/O network. A memory-to-memory data transfer
benchmark eliminates any effects of the storage system and
gives us a true measure of the I/O forwarding capabilities.
Additionally, this memory-to-memory transfer is critical for
data movement between the CNs and the FSNs for parallel
filesystems, and data movement between the CNs and DAs is
of increasing importance for real-time analysis.

Figure 6 compares the end-to-end sustained throughput of
CIOD and ZOID as we vary the number of CNs in a given
pset. This experiment involved 1,000 iterations of transferring
1 MiB from the CN memory to the DA node memory. The
maximum throughput plotted in the figure is the minimum of
the maximum sustained throughputs from Figure 4 and Figure
5. As seen from the figure, the maximum throughput sustained
by CIOD and ZOID is ≈ 420 MiBps, which is only 66%
of the maximum achievable throughput. This performance is
consistent with the result obtained by Lang et al. [11] for
transferring data from the CNs memory to the FSN memory
for a given partition. Additionally, as we increase the number
of nodes, we notice a drop in performance due to the increased
resource contention between the various threads.

Fig. 6. Performance of I/O forwarding between an I/O node and analysis
node

IV. DESIGN

A key factor impacting the performance of I/O forwarding
in BG/P is the resource contention on the ION among the
various threads (ZOID) and processes (CIOD) performing
the I/O operation. Additionally, in CIOD and ZOID, the I/O
operations are synchronous; that is, the application on the CN
is blocked until the I/O operation is completed by the I/O
forwarding mechanism. We explore two potential approaches
to improve I/O forwarding performance: (1) an I/O scheduling

mechanism incorporating a work-queue model to mitigate
resource contention and (2) asynchronous data staging to
overlap the application’s computation with the I/O operations.
We implement these features in ZOID because of the flexibility
and extensibility of ZOID’s design.

Fig. 7. I/O forwarding using a thread-pool and worker queue for I/O
forwarding

As seen in Figure 2b, ZOID uses a thread-per-CN to perform
I/O forwarding. To enable I/O scheduling, we augmented
ZOID’s thread model with a work queue model using a shared
first-in first-out (FIFO) work queue. This is depicted in Figure
7. Instead of executing the I/O operation, the ZOID thread
now enqueues the I/O task into the work queue. We use a
pool of worker threads to handle the I/O tasks in the work
queue. These worker threads are launched at job startup,
and the number of worker threads can be controlled via
an environment variable during job submission. The worker
threads dequeue the I/O tasks from the work queue and
execute them. To facilitate I/O multiplexing per thread, a
worker thread dequeues multiple I/O requests and executes
them in an event loop. The current implementation uses a
poll-based event mechanism. We use a simple load-balancing
heuristic to balance the tasks among the work threads. One
could easily augment this to take the data sizes into account
as well as maintain separate queues based on the priority
of data. Once the worker thread completes an I/O task, it
wakes up the associated ZOID thread and passes the status
of the I/O operation to the ZOID thread. The ZOID thread
passes this status back to the application, which is now free to
progress with its computation. In this case, the data staging is
synchronous because the application is blocked until the I/O
operation is completed.

The second optimization we incorporate is to overlap com-
putation with the I/O operation via asynchronous data staging.
Figure 8 depicts the architecture of ZOID augmented to



support asynchronous data staging as well as I/O scheduling
using a work queue. Asynchronous data staging blocks the
computation only for the duration of copying data from the
CN to the ION. The I/O operation can now concurrently occur
with the computation. To facilitate asynchronous data staging,
we designed a custom buffer management layer (BML) in
ZOID. This enables each ZOID thread to receive data from the
collective network into buffers allocated via BML. The ZOID
thread inserts the I/O task into the work queue and returns,
enabling the computation to progress concurrently with the
I/O operation. In addition, we maintain a database of open
I/O descriptors; for each, we keep a list of completed and
in-progress operations and their associated status, including
errors. We distinguish the various I/O operations performed
on a particular descriptor via a counter. Errors are passed to
the application on subsequent operations on the descriptor.

Fig. 8. Augmenting I/O forwarding with asynchronous data staging

The total memory managed by BML can be controlled
by an environment variable during the application launch. In
the current implementation, the buffer management allocates
buffers that are powers of 2 bytes. We plan to augment the
implementation to support arbitrary message sizes by using
memory allocators such as tcmalloc [1] and hoard [4]. On
completion of the I/O operation, the worker thread returns the
memory buffer to the buffer pool and updates the operation
entry related to the descriptor in the database with the function
return value. In the current implementation, asynchronous data
staging is used only for the data operations such as reads and
writes to sockets and files. Operations for opening and closing
files and sockets or querying their attributes are handled
synchronously. The amount of data that can be buffered is
limited by the available memory on the ION. If there is
insufficient memory to stage the data, the I/O operation is
blocked until a number of queued I/O operations complete and

sufficient memory is available. For large transfers, both CIOD
and ZOID block the I/O operation till sufficient memory is
present on the I/O Node.

V. EVALUATION

We evaluate the efficacy of I/O scheduling and asyn-
chronous data staging to forward I/O in BG/P using a set of
microbenchmarks and an application-level benchmark.

A. Microbenchmarks

We use the memory-to-memory data transfer microbench-
mark used in Section III-C to measure the effective end-to-
end performance of the I/O network throughput achievable be-
tween BG/P CNs and the DA node. We compare performance
of the existing I/O forwarding approaches and our proposed
approach as we scale the number of CNs in a pset concurrently
performing I/O. Next, we evaluate the performance as we vary
the message size and evaluate the impact of the number of
threads in the worker pool on the I/O forwarding performance.
We then present large-scale weak scaling experiments of the
various I/O forwarding mechanisms. Since the I/O network is
shared, the results presented are the maximum of five runs,
each consisting of 1,000 iterations.

1) Performance with Number of Nodes: We evaluate the
performance as we scale the number of nodes in a BG/P pset.
In this experiment, we use a message size of 1 MiB and 4
worker threads for executing the I/O operation in the work
queue. Figure 9 depicts the achievable end-to-end throughput
in MiBps using the various I/O forwarding strategies as we
increase the number of CNs concurrently performing writes
in a partition.

Fig. 9. Performance comparison of I/O forwarding mechanism as we increase
the number of CNs sending 1 MiB messages over the I/O network to a DA
node

In the figure, the efficacy of I/O scheduling is clearly evident
as we increase the number of CNs concurrently performing
I/O. Typically in HPC applications, all the nodes concurrently
perform I/O operations. By incorporating I/O scheduling in
ZOID, we notice up to 38% improvement in performance over
CIOD for 32 CNs and up to 23% improvement over the default



ZOID thread mechanism and up to 83% throughput efficiency.
With 4 CNs, we notice an improvement primarily due to the
I/O multiplexing per thread. Thus, I/O scheduling plays a
key role in mitigating resource contention and improving the
achievable throughput.

Asynchronous data staging and I/O scheduling together give
57% improvement over CIOD for 32 CNs and up to 40%
over the default ZOID performance. The combination yields a
14% improvement over the I/O scheduling alone and achieves
approximately 95% efficiency with respect to the maximum
achievable throughput.

Fig. 10. Performance comparison of I/O forwarding mechanism for 64 CNs
over the I/O network to a DA node with varying message size

2) Performance with Message Size: We evaluate the perfor-
mance of the various forwarding mechanism as we vary the
message size. The number of nodes concurrently performing
the I/O operations was set to 64. CIOD and ZOID use a
two-step approach wherein the function parameters are first
sent from the CN to the ION and the data is then transferred
over the collective network to the ION. This is the primary
performance gating factor for smaller message sizes. As we
increase the message size, the time spent exchanging the
control information with respect to the time spent sending the
message decreases, leading to increased network utilization of
the collective network.

The benefits of I/O scheduling and asynchronous data
staging are evident as we increase the message size. With a
256 KiB message size, CIOD and ZOID achieve 64% and 74%
efficiency, respectively. With I/O scheduling we achieve 86%
efficiency, and asynchronous data staging increases this to 95%
efficiency. We notice a significant improvement in performance
for the various message sizes with both I/O scheduling and
asynchronous data staging. Thus, asynchronous data staging
together with I/O scheduling achieves close to the maximum
throughput achievable.

3) Efficacy of Thread Pool Size: We evaluate the impact
of the number of worker threads on the performance of
I/O forwarding. In this case the I/O forwarding mechanism
involves both I/O scheduling and asynchronous data staging.
Figure 11 depicts the maximum achievable throughput for a

message size of 1 MiB as we vary the number of worker
threads handling the I/O operations.

Fig. 11. Impact of the number of threads on I/O forwarding.

We see that a single thread is unable to sustain more than
300 MiBps. The reason is that a single thread, because ofthe
lower clock speed of a single BG/P core, is unable to sustain
more than 307 MiBps (as evidenced in Figure 5). At 2 and 4
threads, we see an improved performance relative to a single
thread, primarily because multiple threads are available to
drive the network. As we increase the number of threads to 8,
however, we notice a drop in performance relative to 4 threads.
The main reason is the resource contention among the threads
for the 4 cores. The maximum performance is obtained with
4 threads due to the lower contention among resources.

4) Weak Scaling Performance: We compare the weak scal-
ing performance of the various I/O forwarding mechanisms to
move data (memory-to-memory) between the BG/P compute
nodes and DA nodes as we scale the number of BG/P nodes.
We use a message size of 1 MiB. For the data transfer, 20 DA
nodes are used as sinks. The connections from the compute
nodes were distributed among the DA nodes. This is similar
to how the MxN problem redistributes the data from M nodes
to N nodes as well as is the typical distribution of data from
the compute nodes to the file server nodes for parallel file
systems. Since the I/O network infrastructure is shared, we
report the maximum performance achieved in five runs, each
run sustained for 1,000 iterations.

Figure 12 compares the weak scaling of the various I/O
forwarding mechanisms. As we scale the number of BG/P
nodes, we notice a performance improvement in case of all
the three I/O forwarding mechanisms. This is mainly due to
the fact that as the number of BG/P psets(and nodes) involved
in the experiments increases, more I/O nodes are involved in
the data movement thus leading to an increase in I/O network
resources. In case of 256 BG/P nodes, 512 nodes, and 1024
nodes, we have 4, 8, and 16 I/O nodes, respectively. Using
asynchronous data staging and I/O scheduling, we observe a
53% improvement over CIOD and 33% improvement over
ZOID. With 512 nodes and 1024 nodes, respectively, our



approaches yield a 43% and 47% improvement over the
performance of CIOD and a 25% and 34% improvement
over ZOID. Thus, our proposed approaches accelerate parallel
data movement, a critical factor in performing real-time data
visualization and analytics as well as in moving data from the
compute nodes to the file server nodes.

Fig. 12. Weak scaling performance of the I/O forwarding mechanisms

B. Application Benchmark

The results presented so far indicate the peak performance
possible. However, the success of our approach is defined by
its ability to provide performance improvement for applica-
tions. In this section we evaluate the efficacy of our approach
using the MADbench2 [5] [13] benchmark that simulates I/O
from an HPC application. MADbench2 is derived from the
MADspec data analysis code, which estimates the angular
power spectrum of cosmic microwave background radiation
in the sky from noisy pixelized datasets. As part of its
calculations, the MADspec code (and likewise the MAD-
bench2 benchmark) performs extremely large out-of-core ma-
trix operations, requiring successive writes and reads of large
contiguous data from either shared or individual files. Because
of the large, contiguous mixed read and write patterns that
MADbench2 performs and its ability to test various parameters
(shared files, POSIX vs. MPI-IO, etc.), it has become a leading
benchmark in the parallel I/O community [11].

In our tests, we examine the efficacy of the I/O forwarding
mechanism using asynchronous data staging and I/O schedul-
ing and compare it with the CIOD and ZOID I/O forwarding
mechanism to perform I/O to the GPFS storage on Intrepid. We
ran MADbench2 with a single pset containing 64 nodes and
scaled (weak) to 256 nodes. MADbench2 was compiled to run
in I/O mode, so our tests did not include MPI communication
or perform significant computation (the busy-work exponent
α was set to 1). Thus, these results demonstrate just the
capability of BG/P I/O system. The file alignment used by
MADbench2 for these runs was the default of 4,096. We
allowed all processes to perform I/O simultaneously (RMOD
and WMOD both set to 1). For 64 nodes we fixed the problem

Fig. 13. Performance of the MADBench2 application benchmark using the
I/O forwarding mechanisms.

size at NPIX = 4096, and for 256 nodes we fixed NPIX
at 8192, enabling each process to performing I/O operations
of roughly 2 MiB per operation. The number of component
matrices was set to 1024. In aggregate, the I/O performed by
the benchmark totaled 128 GB for 64 nodes and 512 GB for
256 nodes. Since the I/O subsystem is shared and heavily used,
we report the maximum achievable throughput of five runs.

The performance of MADbench2 using the various I/O
forwarding mechanisms is shown in Figure 13. With 64
nodes, I/O forwarding using asynchronous data staging and
I/O scheduling achieves 53% improvement in performance
over CIOD and 40% improvement over ZOID. With 256
nodes, it achieves 49% improvement over CIOD and 34%
improvement over ZOID. Thus, asynchronous data staging and
I/O scheduling are critical to accelerate the I/O performance
for applications on leadership-class machines.

VI. RELATED WORK

Remote Procedure Call (RPC) is a communication mecha-
nism that enables applications to execute the called procedure
on a different host machine. RPCs serialize function parame-
ters that are then passed over the network to a remote server.
The server deserializes the parameters, executes the function
call, and sends the results back to the client. I/O forwarding is
essentially a specialized form of RPC, where the I/O function
calls are sent to the I/O node for execution.

The Computational Plant (Cplant) [18] machine at Sandia
National Laboratories introduced the concept of I/O forward-
ing in HPC systems. The Cplant compute nodes forwarded the
I/O requests to a NFSv2 proxy that performed I/O on behalf of
the compute nodes. Limitations of the Cplant I/O forwarding
infrastructure include lack of data caching and I/O aggregation,
limited support for multithreading, and the absence of locking.

The fast collective network protocol (FCNP) [17] for IBM
BG/P was designed to improve the performance of data
transfer between the compute nodes and the I/O nodes. FCNP
can take advantage of the I/O scheduling and asynchronous



data transfer mechanism proposed to improve the end-to-end
performance.

The I/O forwarding scalability layer project (IOFSL) [3] is
a collaboration between multiple DOE national laboratories
to provide a scalable and portable I/O forwarding layer for
large-scale systems including BG/P, Cray XT, Roadrunner,
and commodity Linux clusters. Like our work, IOFSL uses
a thread pool to decouple the number of I/O threads from
the number of compute clients. However, IOFSL does not
provide asynchronous data staging. We plan to integrate this
into IOFSL.

Using the IONs for filesystem caching has achieved im-
proved performance with parallel file systems [8]. In this work,
a thread on the I/O node is used to aggregate data in order
to perform larger writes to storage. However, just a single I/O
thread is used. As seen in our results, a single thread is unable
to saturate the external I/O network. The write-back caching
and prefetching optimization can leverage our work for data
movement for improved performance.

Decoupled and asynchronous remote transfers (DART) [6]
and DataStager [2] are closely related to our work. These have
demonstrated high-performance transfers for Cray XT5 and
use dedicated data staging nodes. Staging nodes are part of
the BG/P architecture. A focus of I/O forwarding is to forward
all I/O operations transparently without any changes to an
application. DART, on the other hand, requires applications
to be modified via a lightweight API. By using this API,
however, DART provides the building blocks for higher-level
data services such as filtering. Future work in DART as well
as DataStager is to port to the BG/P architecture. They could
use our work as the underlying data transfer mechanism in
order to provide these data services.

Active buffering with threads (ABT) [12] transforms block-
ing write operations into nonblocking operations by buffering
data and subsequently transferring it to storage in the back-
ground. Unlike our work, ABT is implemented in ROMIO,
performing the buffering on the compute client. Since it
requires a thread to perform the write-back, it cannot be used
on systems that do not offer full thread support for compute
nodes, as is the case with the BG/P system. In addition, since
in our work the buffering occurs on the I/O node, no additional
CPU cycles are needed on the compute node. In ABT, the I/O
thread on the compute node competes for CPU time with the
application.

Data staging and and asynchronous I/O have been used
in Grid computing [20] in order improve I/O performance
by hiding the latency associated with wide-are networking
and using novel protocols. In large-scale HPC systems, end-
systems are one of the primary source of bottleneck. In BG/P,
the resource contention on I/O nodes is a critical performance
bottleneck, and our work involves mitigating this resource
bottleneck.

VII. CONCLUSIONS AND FUTURE WORK

The performance mismatch between the computing and I/O
components of current-generation HPC systems has made I/O

the critical bottleneck for data-intensive scientific applications.
I/O forwarding attempts to bridge this increasing performance
gap by regulating the I/O traffic. Our evaluation of the I/O
forwarding mechanism in IBM Blue Gene/P revealed signif-
icant performance bottlenecks caused by resource contention
on the I/O node. Our approaches to overcome this bottleneck
include an I/O scheduling mechanism leveraging a work-queue
model and an asynchronous data staging mechanism. On the
leadership computers at Argonne National Laboratory, these
approaches yield up to 53% improvement in performance over
the existing I/O forwarding mechanism and close to 95%
efficiency. We believe this is a significant step toward scaling
the performance of applications on current large-scale systems
and will provide insight for the design of I/O architectures for
exascale systems.

In the near future, we plan to integrate the approaches
presented in this paper into the IOFSL framework. Since the
compute capabilities of the I/O forwarding nodes are usually
underutilized, we are investigating techniques to offload data
filtering onto the I/O forwarding nodes in order to reduce the
amount of data written to storage as well as to facilitate in
situ analytics.

ACKNOWLEDGMENT

We gratefully acknowledge the use of the resources of the
Argonne Leadership Computing Facility at Argonne National
Laboratory. This work was supported by the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357
and an Argonne National Laboratory Director Postdoctoral
Fellowship. We are grateful to Rob Latham and Phil Carns
for the application benchmarks and related discussions. We
acknowledge Tom Peterka, Jason Cope, Loren Wilson, Bill
Allcock, Phil Carns, Tisha Stacey, Kevin Harms, Andrew
Cherry, and the ALCF team for discussions and help related
to the paper.

REFERENCES

[1] Thread caching malloc (tcmalloc).
[2] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten

Schwan, and Fang Zheng. Datastager: Scalable data staging services for
petascale applications. In HPDC, pages 39–48, 2009.

[3] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang,
Robert Latham, Robert Ross, Lee Ward, and P. Sadayappan. Scalable
I/O forwarding framework for high-performance computing systems. In
Proceedings of IEEE Conference on Cluster Computing, New Orleans,
LA, September 2009.

[4] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and
Paul R. Wilson. Hoard: A scalable memory allocator for multithreaded
applications. SIGPLAN Not., 35(11):117–128, 2000.

[5] J. Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas. Integrated
performance monitoring of a cosmology application on leading hec
platforms. Parallel Processing, International Conference on, 0:119–128,
2005.

[6] C. Docan, M. Parashar, and S. Klasky. Enabling high speed asyn-
chronous data extraction and transfer using DART. Proceedings of the
17th International Syposium on High-Performance Distributed Comput-
ing (HPDC). IEEE Computer Society Press, Boston, MA, 2008.

[7] Green500. http://www.green500.org/.
[8] Florin Isaila, Javier Garcı́a Blas, Jesús Carretero, Robert Latham, Samuel
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